Correct choice is (b) ^1⁄2 e^t + ^1⁄2 Sin(t) – ^1⁄2 Cos(t)
For explanation: We know that,
Given, Y(s)=\(\frac{1}{s(s-1)(s^2+1)}\)
Let, G(s)=\(\frac{1}{(s-1)(s^2+1)}=\frac{1}{2(s^2-1)}-\frac{s+1}{2(s^2+1)}=\frac{1}{2*(s-1)}-\frac{s}{2(s^2+1)}-\frac{1}{2(s^2+1)}\)
Now, g(t)=\(\frac{1}{2}e^t-\frac{1}{2}cos(t)-\frac{1}{2}cos(t)\)
Now, Y(s)=\(\frac{1}{2}G(s)=>y(t)=\int_0^t g(t)dt=\frac{1}{2}e^t+\frac{1}{2}sin(t)-\frac{1}{2}cos(t)\)