Correct choice is (d) ^1⁄3 e^-t [Cos(t) – Cos(2t)].
Easiest explanation: Given, \(Y(s)=\frac{(s+1)}{[(s+1)^2+4][(s+1)^2+1]}\)
=\(\frac{s+1}{3(s^2+ 2*s + 2)}-\frac{s+1}{3(s^2+ 2*s + 5)}\)
=\(\frac{s+1}{3[(s+1)^2+1]}-\frac{s+1}{3[(s+1^2+4)]}\)
=\(\frac{1}{3} [e^{-t} Cos(t)]-\frac{1}{3}[e^{-t} Cos(2t)]\)
=\(\frac{1}{3} e^{-t} [Cos(t)-Cos(2t)]\)