Right choice is (a) x=3y^2+cy
The best I can explain: \((x+3y^2)\frac{dy}{dx} = y\) can be rearranged to \(\frac{dx}{dy} = \frac{x}{y} + 3y \rightarrow \frac{dx}{dy} – \frac{x}{y} = 3y \)
above equation is of the form \(\frac{dx}{dy}\) + Px = Q where P & Q is a function of y only
given DE is linear DE in x here\( P = \frac{-1}{y}, Q=3y, e^{\int P \,dy} = e^{\int \frac{-1}{y} \,dy} = e^{logy^{-1}} = \frac{1}{y}\)
therefore its solution is given by \(xe^{\int P \,dy} = \int Q \,e^{\int P \,dy} dy + c\)
\(x \frac{1}{y} = \int 3y * \frac{1}{y} \,dy + c = 3y + c\)
i.e x=3y^2+cy.