Correct option is (a) (y-x)-log(x(1+y))=c
The explanation is: \(xy \frac{dy}{dx} = 1+x+y+xy\)
\(xy \frac{dy}{dx} = (1+x)+y(1+x)=(1+x)(1+y)\)
separating the variables & hence integrating
\(\frac{y}{1+y} \,dy = \frac{1+x}{x} \,dx\)
\(\int\frac{y}{1+y} \,dy = \int \frac{1+x}{x} \,x\)
\(\int\frac{(1+y)-1}{1+y} \,dy = \int\frac{1}{x} \,dx + \int1 \,dx\)
\(\int1 \,dy – \int\frac{1}{1+y} \,dy – log \,x – x = c\)
y – log(1+y) – log x – x = c
(y-x) – log(x(1+y)) = c is the solution.