The correct answer is (c) \(\frac{1}{2} cos(t)-cos(\sqrt2t)-\frac{1}{2} cos(\sqrt3t)\)
The explanation: In the given question,
\(L^{-1} \left (\frac{s}{(s^2+1)(s^2+2)(s^2+3)}\right )\)
=\(L^{-1} \left (\frac{\frac{1}{2}}{(s^2+1)}+\frac{(-1)}{(s^2+2)}+\frac{\frac{(-1)}{2}}{(s^2+3)}\right )\) ——————-By method of Partial fractions
=\(\frac{1}{2} cos(t)-cos(\sqrt2t)-\frac{1}{2} cos(\sqrt3t)\).