The correct choice is (b) \(\frac{2}{9} e^t-\frac{2}{9} e^{-2t}+\frac{1}{3} e^{-2t}×t\)
The explanation: In the given question,
\(L^{-1} \left (\frac{s+1}{(s-1)(s+2)^2}\right )\)
Using properties of partial fractions-
s+1=A(s+2)^2+B(s-1)(s+2)+C(s-1)
At s=1, A=\(\frac{2}{9}\)
At s=2, C=\(\frac{1}{3}\)
At s=0, B=\(\frac{-2}{9}\)
Re substituting all these values in the original fraction,
=\(L^{-1} \left (\frac{2}{9(s-1)} + \frac{-2}{9(s+2)} + \frac{1}{3(s+2)^2}\right)\)
=\(\frac{2}{9} e^t-\frac{2}{9} e^{-2t}+\frac{1}{3} e^{-2t}×t\).