Right answer is (d) \(10e^{\frac{-5}{2x^2}} e^{\frac{5}{y}} \)
To elaborate: \(u(x,t) = X(x) T(t) \)
\(x^3 X’Y+y^2 Y’X=0\)
\(\frac{X’}{ X} = \frac{k}{x^3} \) which implies \(X = ce^{\frac{k}{2x^2}}\)
\(\frac{Y’}{Y} = \frac{-k}{y^2} \) which implies \(Y = c’ e^{\frac{k}{y}}\)
\(u(x,t) = cc’e^{\frac{k}{2x^2}} e^{\frac{k}{y}} \)
\(u(0,y) = 10e^{\frac{5}{y}}= cc’e^{\frac{k}{y}} \)
Therefore k = 5 and cc’ = 10
Hence, \(u(x,t) = 10e^{\frac{-5}{2x^2}} e^{\frac{5}{y}}. \)