The correct answer is (a) \(\frac{s(s^2+28)}{(s^2+36)(s^2+4)}\)
For explanation: Given x(t)=(cos2t)^3 u(t) = \(\frac{[cos6t+3cos2t]}{4}\) u(t)
X(s) = L{x(t)} = \(L[\frac{(cos6t+3cos2t)}{4} \,u(t)] = \frac{1}{4}\) {L[cos6t u(t)]+3L[cos2t u(t)]}
= \(\frac{1}{4} \left(\frac{s}{s^2+(6)^2} + 3 \frac{s}{s^2+(2)^2}\right) = \frac{s(s^2+28)}{(s^2+36)(s^2+4)}\).