Right choice is (c) \frac{1}{4}(δ(k+1] + 2δ[k] + δ[k-1])
The best I can explain: N=8, ω = \frac{2π}{8} = \frac{π}{4}
X[n] = cos^2 (\frac{π}{8} n) = \frac{1}{4}(e^{j(\frac{π}{8})n} + e^{-j(\frac{π}{8})n})^2
= \frac{1}{4}(e^{j(\frac{π}{8})n} + 2 + e^{-j(\frac{π}{8}n})^2
Or, X[k] = \frac{1}{4}(δ(k+1] + 2δ[k] + δ[k-1]).