Right answer is (b) \(-\frac{2}{(s-1)^2+2^2}\)
The explanation is: Given x(t) = e^t sin2t for t≤0
∴ x(t) = e^t sin2t u(-t)
L{x(t)} = X(s) = \(\int_{-∞}^∞ x(t) e^{-st} \,dt = \int_{-∞}^∞ e^t \,sin2t \,u(-t) e^{-st} \,dt\)
= \(\int_{-∞}^0 \left(e^{j2t} – e^{-j2t}{2j}\right) = \frac{1}{2j} \int_{-∞}^0 [e^{(1-s+j2)t} – e^{(1-s-j2)t}]dt\)
= \(\frac{1}{2j} \left(\frac{1}{1-s+j2}-\frac{1}{1-s-j2}\right)\)
=\(-\frac{2}{(s-1)^2+2^2}\).