Right choice is (a) \(-\frac{1}{(s-2)^2} + \frac{1}{(s+2)^2}\)
The explanation is: Given x(t)=te^-2|t|
L{x(t)} = X(s) = \(\int_{-∞}^∞ x(t) e^{-st} \,dt = \int_{-∞}^∞ te^{-2|t|} e^{st} \,dt \)
=\(\int_{-∞}^0 te^{2t} e^{-st} \,dt + \int_0^∞ te^{-2t} e^{-st} \,dt = -\frac{1}{(s-2)^2} + \frac{1}{(s+2)^2}\).