Right option is (d) \(\frac{ω}{(s+a)^2+ω^2}\)
To explain: Laplace transform, L{x(t)} = X(s) = \(\int_{-∞}^∞ x(t) e^{-st} \,dt\)
L{x(t)} = X(s) = \(L{e^{-at} \frac{e^{jωt}-e^{-jωt}}{2j} \,u(t)} = \frac{1}{2j} L[e^{-(a-jω)t} \,u(t)] – \frac{1}{2j} L[e^{-(a+jω)t} \,u(t)]\)
X(s) = \(\frac{1}{2j} [\frac{1}{s+(a-jω)} – \frac{1}{s+(a+jω)}] = \frac{1}{2j} [\frac{2jω}{(s+a)^2+ω^2}] = \frac{ω}{(s+a)^2+ω^2}\)
e^^-at sinωt u(t) \(\underleftrightarrow{LT} \frac{ω}{(s+a)^2+ω^2}\);ROC Re(s)>-a.