Right choice is (d) \(\frac{1}{s+a}\), Re{s}>-a
Easiest explanation: Laplace transform, L{x(t)} = X(s) = \(\int_{-∞}^∞ x(t) e^{-st} \,dt\)
L{e^-at) u(t)} = \(\int_{-∞}^∞ e^{-at} u(t) e^{-st} \,dt = \int_0^∞ e^{-at} e^{-st} \,dt = \frac{1}{s+a}\) when (s+a)>0
(σ+a)>0
σ>-a
ROC is Re{s}>-a.