Correct answer is (a) \(\frac{6e^{-jω}}{9+ω^2} – \frac{12jωe^{-jω}}{9+ω^2}\)
The explanation is: e^-3|t| = e^-3t, when t>0 and
e^3t, when t<0
Now, Fourier transform of e^-3|t| = \(\frac{6}{9+ω^2}\)
Again, x (t-1) ↔ e^-jω X(jω)
And t x (t) ↔ \(j\frac{d}{dω}\) X(jω)
∴ X (jω)= \(j\frac{d}{dω} [e^{-jω} \frac{6}{9+ω^2}]\)
= \(\frac{6e^{-jω}}{9+ω^2} – \frac{12jωe^{-jω}}{9+ω^2}\).