Correct option is (a) 14e^2x x^(2e^2x) (2 logx+\(\frac{1}{x}\))
The explanation is: Consider y=7x^(2e^2x)
logy=log7x^(2e^2x)
logy=log7+logx^(2e^2x)
logy=log7+2e^2x logx
Differentiating with respect to x on both sides, we get
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{d}{dx}\) (log7+2e^2x logx)
\(\frac{1}{y} \frac{dy}{dx}\)=0+\(\frac{d}{dx}\) (2e^2x) logx+\(\frac{d}{dx}\) (logx)2e^2x (using u.v=u’ v+uv’)
\(\frac{1}{y} \frac{dy}{dx}\)=2e^2x.2.logx+\(\frac{2e^{2x}}{x}\)
\(\frac{dy}{dx}\)=y\( \left (4e^{2x} \,logx+\frac{2e^{2x}}{x}\right)\)
\(\frac{dy}{dx}\)=7x^(2e^2x) \( \left (4e^{2x} \,logx+\frac{2e^{2x}}{x}\right)\)
\(\frac{dy}{dx}\)=14e^2x x^(2e^2x) (2 logx+\(\frac{1}{x}\))