Correct option is (d) (3 cosx)^x (log(3 cosx)-x tanx)
The best I can explain: Consider y=(3 cosx)^x
Applying log on both sides, we get
logy=log(3 cosx)^x
logy=x log(3 cosx)
logy=x(log3+log(cosx))
Differentiating both sides with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx} =\frac{d}{dx} (x log3)+\frac{d}{dx} (x) log(cosx)+\frac{d}{dx}(log(cosx)).x\)
\(\frac{1}{y} \frac{dy}{dx}=log3+log(cosx)+\frac{1}{cosx}.-sinx.x\)
\(\frac{1}{y} \frac{dy}{dx}\)=log3+log(cosx)-x tanx
\(\frac{dy}{dx}\)=y(log(3 cosx)-x tanx)
\(\frac{dy}{dx}\)=(3 cosx)^x (log(3 cosx)-x tanx)