Right choice is (c) –\(\frac{1}{7}\) (cotx+tanx)+C
Explanation: To find: \(\int \frac{cos^2x-sin^2x}{7 \,cos^2x \,sin^2x} dx\)
\(\int \frac{cos^2x-sin^2x}{7 \,cos^2x \,sin^2x} dx=\frac{1}{7} \int \frac{1}{sin^2x}-\frac{1}{cos^2x} dx\)
=\(\frac{1}{7} \int cosec^2 x-sec^2x dx\)
=\(\frac{1}{7}\) (-cotx-tanx)+C
=-\(\frac{1}{7}\) (cotx+tanx)+C.