The correct answer is (b) \(sinx^3+8x^3+C\)
Easy explanation: By using the method of integration by substitution,
Let x^3=t
Differentiating w.r.t x, we get
3x^2 dx=dt
\(\int 3x^2 \,(cosx^3+8) \,dx=\int (cost+8)dt\)
\(\int (cost+8) dt=sint+8t\)
Replacing t with x^3,we get
\(\int 3x^2 (cosx^3+8) dx=sinx^3+8x^3+C\)