Correct option is (d) \(2\sqrt{x^5+9}\)
For explanation I would say: Let x^5+9=t
Differentiating w.r.t x, we get
5x^4 dx=dt
\(\int \frac{5x^4}{\sqrt{x^5+9}} dx=\int \frac{dt}{\sqrt{t}}\)
=\(\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}=2\sqrt{t}\)
Replacing t with x^5+9, we get
\(\int \frac{5x^4}{\sqrt{x^5+9}} dx=2\sqrt{x^5+9}\).