The correct choice is (d) sinc(2cosθ)
The explanation is: Normalized array factor is given by
\(AF=\frac{sin(Nᴪ/2)}{N \frac{ᴪ}{2}}\)
And ᴪ=kdcosθ+β
Since its given broad side array β=0,
ᴪ=kdcosθ+β=kdcosθ
\(\frac{Nᴪ}{2}=4kdcosθ=4(\frac{2π}{λ})(\frac{λ}{4})cosθ=2πcosθ\)
\(AF=\frac{sin(Nᴪ/2)}{N \frac{ᴪ}{2}}=\frac{sin(2πcosθ)}{2πcosθ}=sinc(2cosθ).\)