Correct choice is (b) \(\frac{sin(4kdcosθ)}{4kdcosθ} \)
The best I can explain: Normalized array factor is given by \(AF=\frac{sin(Nᴪ/2)}{N \frac{ᴪ}{2}}\)
And ᴪ=kdcosθ+β
Since its given broad side arrayβ=0,
ᴪ=kdcosθ+β=kdcosθ
\(\frac{Nᴪ}{2}=4kdcosθ\)
\(AF=\frac{sin(Nᴪ/2)}{N \frac{ᴪ}{2}}=\frac{sin(4kdcosθ)}{4kdcosθ} \)