Correct answer is (a) sinc(4cosθ)
Easiest explanation: Normalized array factor is given by \(AF=\frac{sin(Nᴪ/2)}{N \frac{ᴪ}{2}}\)
And ᴪ=kdcosθ+β
Since its given broad side array β=0,
ᴪ=kdcosθ+β=kdcosθ
\(\frac{Nᴪ}{2}=4kdcosθ=4(\frac{2π}{λ})(\frac{λ}{2})cosθ=4πcosθ \)
\(AF=\frac{sin(Nᴪ/2)}{N \frac{ᴪ}{2}}=\frac{sin(4πcosθ)}{4πcosθ}=sinc(4cosθ).\)