Correct option is (d) \(=\frac{10204}{12221}\)
Best explanation: \(=lt_{x\rightarrow -101}(\frac{ln(1+\frac{(x+101)^2(x^2+3)}{(x^2+20x)}}{(x+101)^2})\)
Now expanding into Taylor series we have
\(=lt_{x\rightarrow -101}(\frac{1}{(x+101)^2})\times(\frac{(x+101)^2(x^2+3)}{(x^2+20x)}-\frac{(x+101)^4(x^2+3)^2}{2(x^2+20x)^2}+…\infty)\)
\(=lt_{x\rightarrow -101}(\frac{(x^2+3)}{(x^2+20x)}-\frac{(x+101)^2(x^2+3)^2}{2(x^2+20x)^2}+….\infty)\)
All others exceptthe first term tend to zero. Thus, we have
\(=lt_{x\rightarrow -101}(\frac{(-101)^2+3}{(101)^2+20(101)})\)
\(=\frac{10204}{12221}\)