Right choice is (a) y=cx+\(\frac{1}{c+1}\)
To explain: xp^2+px-py+1-y=0
xp^2+px+1=y(p+1)
\(y=\frac{xp(p+1)+1}{p+1} \,or\, y=px+\frac{1}{p+1}\)……(1) thus (1) is in the Clairaut’s equation form y=px+f(p),
thus general solution is y=cx+\(\frac{1}{c+1}\).