Correct choice is (d) \(\frac{1-cos(2t)}{4}\)
To elaborate: In the given question
Let p1(s) = \(\frac{1}{s^2+4}\) and p2(s) = \(\frac{1}{s}\)
\(f_1 (t) = L^{-1} (\frac{1}{s^2+4}) = \frac{sin(2t)}{2}\)
\(f_2 (t) = L^{-1} (\frac{1}{s}) = 1\)
By Convolution Theorem,
\(L^{-1} (p_1(s)×p_2(s)) = \int_{0}^{t}f_1(u) f_2(t-u) dt\)
\(L^{-1} (\frac{1}{s(s^2+4)}) = \int_{0}^{t}\frac{1}{2} sin(2u) du\)
=\(\frac{1-cos(2t)}{4}\)
Thus, the answer is \(\frac{1-cos(2t)}{4}\).