Right answer is (b) \(\frac{1}{xy} = -x + c\)
For explanation: Given equation is of the form \(\frac{dy}{dx} + Py = Qy^n\) …divide by y^2
where P and Q are functions of x hence this is Bernoulli’s equation in \(y, \frac{1}{y^2} \frac{dy}{dx} + \frac{1}{yx} = x\)
put \(\frac{1}{y} = t \rightarrow \frac{-1}{y^2} \frac{dy}{dx} = \frac{dt}{dx}\) substituting we get – \(\frac{dt}{dx} + \frac{t}{x} = x \,or\, \frac{dt}{dx} – \frac{t}{x} = -x\)
this equation is linear in t i.e it is of the form
\(\frac{dt}{dx} + Pt = Q, I.F = e^{\int P \,dx} =e^{\int \frac{-1}{x} \,dx} = e^{-logx} = \frac{1}{x}\)
its solution is
\(te^{\int P \,dx} = \int Q e^{\int P \,dx} \,dx + c \rightarrow t \frac{1}{x} = \int -x * \frac{1}{x} \,dx + c \rightarrow \frac{t}{x} = -x + c \,but\, t = \frac{1}{y}\)
thus solution is given by \(\frac{1}{xy} = -x + c\).