Correct option is (c) \(y^3 cos^3 x = \frac{-cos^6 x}{2} + c \)
To explain I would say: \(\frac{dy}{dx} -y \,tanx = \frac{sinx cos^2x}{y^2}\) multiplying by
\(y^2 \rightarrow y^2 \frac{dy}{dx} – y^3 tanx = sinx \,cos^2x \)
put \(t = y^3\rightarrow3y^2 \frac{dy}{dx} = \frac{dt}{dx} \,or\, y^2 \frac{dy}{dx} = \frac{1}{3} \frac{dt}{dx}\)
substituting \(\frac{dt}{dx}-3t \,tanx = 3sinx \,cos^2x \)
this equation is linear in t i.e it is of the form \(\frac{dt}{dx} + Pt = Q, e^{\int P \,dx} = e^{\int -3tanx \,dx}\)
\(e^{-3 log\, secx} = cos^3 \,x\) its solution is \(te^{\int P \,dx} = \int Q \,e^{\int P \,dx} dx + c\)
t cos^3 x=∫3sinx cos^2x cos^3 x dx + c = ∫3sinx cos^5x dx+c, put v=cos x
dv=-sin x dx i.e \(\int 3sinx \,cos^5\, x \,dx = \int -3v^5 \,dx = \frac{-v^6}{2} = \frac{-cos^6 x}{2}\) hence its solution becomes \(t cos^3 x = \frac{-cos^6 x}{2} + c \rightarrow y^3 cos^3 \,x = \frac{-cos^6 x}{2} + c.\)