The correct choice is (d) \(sin(\frac{y}{x}) = xc\)
To explain: \(\frac{dy}{dx} = \frac{y}{x} + tan\frac{y}{x}\) we can clearly see that it is an homogeneous equation
substituting \(y = vx \rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} = v + tan \,v\)
separating the variables and integrating we get
\(\int \frac{1}{tanv} \,dv = \int \frac{1}{x} dx\)
log(sin v) = log x + log c
\(sin \,v = xc \rightarrow sin(\frac{y}{x}) = xc\) is the solution where c is constant.