The correct option is (c) (tan x. tany)=k
The best explanation: sec^2 x tany dx + sec^2 y tanx dy=0
dividing throughout by tan y.tan x we get
\(\frac{sec^2 x}{tanx} \,dx + \frac{sec^2 y}{tany} \,dy=0\)……separating the variable
now integrating we get \(\int \frac{sec^2 x}{tanx} \,dx + \int \frac{sec^2 y}{tany} \,dy=c\)
substituting tan x = t & tan y=p→sec^2 x dx=dt & sec^2 y dy=dp
\( \rightarrow \int \frac{1}{t} \,dt + \int \frac{1}{p} \,dp=c\)
log t + log p = c –>log(tan x)+log(tan y) = c = log k….since it is an unknown constant
log(tan x .tan y) = log k
(tan x tan y) = k is the solution.