Correct option is (b) \(y^2 = cx^2 – \frac{2c}{c+1}\)
To explain I would say: \(X=x^2 \rightarrow \frac{dX}{dx} = 2x\)
\(Y=y^2 \rightarrow \frac{dY}{dy} = 2y\)
now \(p = \frac{dy}{dx} = \frac{dy}{dY} \frac{dY}{dX} \frac{dX}{dx} \,and\, \,let\, P=\frac{dY}{dx}\)
\(p=\frac{1}{2y} * P * 2x \,or\, p=\frac{x}{y} \,P \,i.e\, p=\sqrt{\frac{X}{Y}} P\)
now consider (px-py)(py+x)=2p substituting the value of p we get
\(\left(\sqrt{\frac{X}{Y}} P \sqrt{X} – \sqrt{Y}\right)\left(\sqrt{\frac{X}{Y}} P \sqrt{Y} + \sqrt{X}\right) = 2\sqrt{\frac{X}{Y}} P\)
\(\frac{(PX-Y)}{\sqrt{Y}} (P+1)\sqrt{X} = 2\sqrt{\frac{X}{Y}} P \rightarrow (PX-Y)(P+1)=2P \,or\, Y(P)=PX-\frac{2P}{P+1}\) is in the Clairaut’s form
hence general solution is \(y^2 = cx^2 – \frac{2c}{c+1}\).