Correct choice is (a) \(\frac{1}{2\sqrt{2}} tan^{-1}(\frac{4x+2y+1}{\sqrt{2}})=x+c \)
For explanation I would say: \(\frac{dy}{dx} = (4x+2y+1)^2\)
here we use substitution for \( 4x+2y+1 = t→4 + 2\frac{dy}{dx} = \frac{dt}{dx} \rightarrow \frac{dy}{dx} = \frac{1}{2} \frac{dt}{dx} – 2\)
\(\frac{1}{2} \frac{dt}{dx} – 2 = t^2\)
\(\frac{dt}{dx}=2t^2+4\)
separating the variable and integrating
\(\int \frac{1}{2t^2+4} \,dt = \int dx\)
\(\frac{1}{2\sqrt{2}} tan^{-1} \frac{t}{\sqrt{2}} = x + c\)
\(\frac{1}{2\sqrt{2}} tan^{-1}(\frac{4x+2y+1}{\sqrt{2}})=x+c \) is the solution.