Correct choice is (b) x^2 p=(x^2-2y^2)^3
To elaborate: \(\frac{dy}{dx} = \frac{x^2+y^2}{3xy} = \frac{1+\frac{y^2}{x^2}}{3 \frac{y}{x}}\) we can clearly see that it is an homogeneous equation
hence substituting \(y = vx\rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} = \frac{1+v^2}{3v}\)
separating the variables and integrating
\(x \frac{dv}{dx} = \frac{1+v^2}{3v} – v = \frac{1-2v^2}{3v}\)
\(\int \frac{3v}{1-2v^2} \,dv = \int \frac{1}{x} dx\)…….substituting 1-2v^2=t→-4v dv=dt we get
\(\frac{-3}{4} log \,t = log \,x + log \,c \rightarrow \frac{-3}{4} log(1-2v^2) = log \,cx…..but \,v = \frac{y}{x}\)
\(-3log(\frac{x^2-2y^2}{x^2})=4log \,cx \rightarrow log(\frac{x^2-2y^2}{x^2})^{-3} = log \,kx^4 \)
\(\frac{x^6}{(x^2-2y^2)^3} = kx^4 \rightarrow x^2 \,p = (x^2-2y^2)^3\) is the solution where p is constant.