Right answer is (c) \(\frac{10}{R^2+L^2} (R sint – L cost + Le^{\frac{-Rt}{L}})\)
Easy explanation: \(L \frac{di}{dt} + Ri = 10 \,sint \rightarrow \frac{di}{dt} + \frac{R}{L} i=\frac{10 sin t}{L} \) since it is an Linear DE its solution is
given by \(ie^{\frac{Rt}{L}} = \int \frac{10}{L} * sint * e^{\frac{Rt}{L}} \,dt = \frac{10}{L} \int \,sint * e^{\frac{Rt}{L}} \,dt \) ……using the formula
\(\int e^{at} \,sin\, bt \,dt = \frac{e^{at}}{a^2+b^2} (a sinbt – b cosbt)\) we get
\(ie^{\frac{Rt}{L}} = \frac{10}{L} * \frac{e^{\frac{Rt}{L}}}{(\frac{R}{L})^2+1^2} (\frac{R}{L} sint-cost)+c\)
\(ie^{\frac{Rt}{L}} = \frac{10e^{\frac{Rt}{L}}} {R^2+L^2} (R sin t-L cos t) + c \rightarrow i(t) = \frac{10}{R^2+L^2} (R sint-L cost) + ce^{\frac{-Rt}{L}}\)..(1)
using i(0)=0 we have \(c=\frac{-10L}{R^2+L^2} \) substituting this back in (1) we get
\(i(t) = \frac{10}{R^2+L^2} (R sint-L cost) – \frac{10L}{R^2+L^2} e^{\frac{-Rt}{L}} = \frac{10}{R^2+L^2} (R sint – L cost + Le^{\frac{-Rt}{L}}).\)