Right choice is (a) \(3 \,sinx-\frac{1}{x}+C\)
The best I can explain: To find \(\int \,3 \,cosx+\frac{1}{x^2} dx\)
\(\int \,3 \,cosx+\frac{1}{x^2} dx=3 \int cosx \,dx+\int \frac{1}{x^2} \,dx\)
\(\int \,3 \,cosx+\frac{1}{x^2} dx=3 \,sinx+\int x^{-2} \,dx\)
\(\int \,3 \,cosx+\frac{1}{x^2} dx=3 \,sinx+\frac{x^{-2+1}}{-2+1}\)
\(\int \,3 \,cosx+\frac{1}{x^2} dx=3 \,sinx-\frac{1}{x}+C\)