The correct answer is (b) \(\frac{7 \,sinmx}{m}+C\)
Easy explanation: Using Integration by Substitution, Let xm=t
Differentiating w.r.t x, we get
mdx=dt
∴\(\int 7 \,cosmx \,dx=\int \frac{(7 cost)}{m} dt\)
=\(\frac{7}{m} \int cost \,dt=\frac{7}{m} (sint)+C\)
Replacing t with mx again we get,
\(\int 7 \,cosmx \,dx=\frac{7 \,sinmx}{m}+C\)