Correct option is (a) 2 tan^4x+C
The explanation: To find: \(\int 8 \,tan^3x \,sec^2x \,dx\)
Let tanx=t
sec^2x dx=dt
∴\(\int 8 \,tan^3x \,sec^2x \,dx=\int 8 \,t^3 \,dt=\frac{8t^4}{4}=2t^4\)
Replacing t with tanx, we get
\(\int 8 tan^3x sec^2x dx=2 tan^4x+C\)