Correct answer is (b) –\(12 \,cos\sqrt{x}+C\)
Easiest explanation: Let \(\sqrt{x}=t\)
Differentiating w.r.t x,we get
\(\frac{1}{2\sqrt{x}} dx=dt\)
\(\frac{1}{\sqrt{x}} dx=2dt\)
∴\(\int \frac{6 sin\sqrt{x}}{\sqrt{x}} dx=\int \,12 \,sint \,dt\)
=12(-cost)=-12 cost
Replacing t with \(\sqrt{x}\), we get
\(\int \frac{6 sin\sqrt{x}}{\sqrt{x}} dx=-12 \,cos\sqrt{x}+C\)