Right option is (b) \(e^{xSin(x)}=1+x^2+x^4/3+x^6/120+…\)
Easy explanation: Given, f(x) = e^xSin(x), f(0) = 1
Now, the expansion of xSin(x) is \(x^2-x^3/3!+x^6/5!+…\)
Hence, \(e^xSin(x)=e^y=1+y+y^2/2!+y^3/3!+…\)
Hence,
\(e^{xSin(x)}=1+(x^2-\frac{x^4}{3!}+\frac{x^6}{6!}+..)+\frac{(x^2-\frac{x^4}{3!}+x^6/6!+..)^2}{2!}+\frac{(x^2-\frac{x^4}{3!}+x^6/6!+…)^3}{6}+..\)
\(e^{(xSin(x))}=1+x^2-\frac{x^4}{3!}+\frac{x^6}{5!}+\frac{x^4}{2}-\frac{x^6}{6}+\frac{x^6}{6}+….\) (we neglect all other other terms by considering the options given)
Hence, \(e^{xSin(x)}=1+x^2+\frac{x^4}{3}+\frac{x^6}{120}+…\)