The correct option is (b) ^1⁄a + 1
Easy explanation: \int_0^1x^a dx=lt_{n\rightarrow\infty}\frac{1}{n}\times((\frac{1}{n})^a+(\frac{2}{n})^a+…+(\frac{n-1}{n})^a)
=lt_{n\rightarrow\infty}\frac{(1^a+2^a+…+(n-1)^a)}{n^{a+1}}
It is enough to evaluatethis integral
\int_0^1 x^adx=[\frac{x^{a+1}}{a+1}]_0^1
=\frac{1}{a+1}