Correct option is (c) y = -2sin^2 x + 4sin^3 x
The explanation: \(\frac{dy}{dx}\) – 3y cotx = sin2x is of the form \(\frac{dy}{dx}\) + Py = Q where P & Q is a function of x
only given DE is linear DE in y here P=-3cot x, Q=sin 2x, \(e^{\int P \,dx} = e^{\int -3cotx \,dx}\)
\( =e^{-3 logsinx} = e^{log(\frac{1}{sin^3x})} = \frac{1}{sin^3x}\)
Linear DE solution is given by \(ye^{\int P \,dx} = \int Q \,e^{\int P \,dx} dx + c\)
\(y \frac{1}{sin^3x} = \int sin \,2x \frac{1}{sin^3x} \,dx + c = \int 2 \,sinx \,cosx \frac{1}{sin^3x} dx = \int 2 \,cosx \frac{1}{sin^2x} dx\)
substitute sin x=t to solve integral \(y \frac{1}{sin^3x} = \int 2 \frac{1}{t^2} \,dt + c = \frac{-2}{t} + c = \frac{-2}{sinx} + c\)
it is given that when x=π/2, y=2→2=-2+c→c=4 its particular solution is thus given
by \(y \frac{1}{sin^3x} = \frac{-2}{sinx} + 4 \rightarrow y = -2sin^2 \,x + 4sin^3 \,x.\)