The correct answer is (a) ^1⁄6 e^ – t – ^1⁄36 e^t + ^1⁄36 e^-5t
Easiest explanation: Given, \(F(s)=\frac{1}{(s-1)^2 (s+5)}=\frac{1}{(s-1)} \left [\frac{1}{(s-1)(s+5)}\right ]\)
=\(\frac{1}{(s-1)} \left [\frac{1}{6(s-1)}-\frac{1}{6(s+5)}\right ]\)
=\(\frac{1}{6} \left [\frac{1}{(s-1)^2}-\frac{1}{(s-1)(s+5)}\right ]\)
=\(\frac{1}{6} \left [
\frac{1}{(s-1)^2} – \frac{1}{6} \left [\frac{1}{(s-1)} – \frac{1}{(s+5)}\right ]\right ]\)
=\(\frac{1}{6(s-1)^2}-\frac{1}{36(s-1)}+\frac{1}{36(s+5)}\)
Inverse Laplace transform is \(f(t)=\frac{1}{6} e^t t-\frac{1}{36} e^t+\frac{1}{36} e^{-5t}\)