Right choice is (a) \(\frac{x lnx+y lny}{xy} = c\)
Best explanation: \(\frac{dy}{dx} = \frac{y(x-y lny)}{x(x ln x-y)}\)
–> x^2 lnx dy-xy dy=xy dx – y^2 lny dx …….dividing by x^2 y^2 then
\(\frac{lny}{y^2} \,dy\, – \frac{1}{xy} \,dy\, = \frac{1}{xy} \,dx\, – \frac{lny}{x^2} \,dx\)
\((ln x(\frac{1}{-y^2}dy) + \frac{1}{xy} \,dx) + (ln y(\frac{1}{-x^2}dx) + \frac{1}{xy} \,dy) = 0 \)
\(d(\frac{lnx}{y}) + d(\frac{lny}{x}) = 0\)
on integrating we get
\(\int d(\frac{lnx}{y}) + \int d(\frac{lny}{x})\)
\( \frac{lnx}{y} + \frac{lny}{x}\) = c…. where c is a constant of integration.